Как происходит синтез холестерина в печени?
Поскольку вещество принадлежит к классу спиртов, единственно правомочным является термин «холестерол», название же «холестерин» (буквально «твёрдая желчь» ввиду его первоначального выделения из желчных камней) закрепилось за соединением в силу традиции – впервые полученное в 1769 году французским химиком Пулетье де ля Саль, оно проявляло явные свойства жиров, к коим и было первоначально причислено.
Ввиду некоторых добросовестных заблуждений учёных, холестерин был на долгие годы объявлен для здоровья организма «врагом №1», что вызвало настоящий переворот в пищевой промышленности, фармакологии и методах лечения – одновременно с обезжиренными продуктами в мир явилась новые препараты и методики, способные существенно снизить концентрацию соединения в крови, а вместе со всем этим – и аппараты контроля за «вредителем», чтобы его можно было всегда держать в узде.
Поскольку лучшим способом проверить вредоносность того или иного фактора является метод его изъятия из обращения, это и было проделано – в итоге весь мир теперь пожинает катастрофические плоды «обезжиривающей диеты», а учёные вынуждены оправдываться и обещать всё исправить. Но сделать это можно, лишь разобравшись в происхождении и истинной роли вещества в организме.
h2>Основные функции холестеринаПомимо того, что он является непременным компонентом (стабилизатором текучести) цитоплазматической мембраны, обеспечивая жёсткость её двойного слоя за счёт более компактного размещения фосфолипидных молекул, холестерин проявляет себя как фактор-регулятор проницаемости клеточных стенок, препятствуя гемолизу крови (воздействию гемолитических ядов на мембраны эритроцитов).
Еще он служит исходной субстанцией для производства соединений стероидной группы:
- гормонов-кортикостероидов;
- половых гормонов;
- желчных кислот;
- витаминов D-группы (эргокальциферорола и холекальциферола).
Учитывая важность для организма каждого из этой группы веществ, становится понятен вред бесхолестериновой диеты либо искусственного снижения уровня этого вещества в крови.
Ввиду нерастворимости в воде эта субстанция может быть транспортирована кровью лишь в связке с белками-транспортёрами (аполипопротеинами), при соединении с которыми образуются липопротеиновые комплексы.
По причине существования целого ряда различных аполипопротеинов (с различием молекулярной массы, степенью их тропности к холестерину, а также ввиду способности образованного комплекса к растворению в крови, и наличия обратных свойств – к выпадению холестериновых кристаллов с образованием атеросклеротической бляшки) выделяют категории липопротеинов:
- высокой плотности (ЛПВП, или высокомолекулярные, или HDL-липопротеины);
- низкой плотности (ЛПНП, или низкомолекулярные, или LDL-липопротеины);
- очень низкой плотности (ЛПОНП, крайне низкомолекулярные, или VLDL- категория липопротеинов);
- хиломикроны.
К тканям периферии холестерин поступает связанным с хиломикронами, ЛПНП либо ЛПОНП, в печень (с последующими удалением из организма) – путём транспортировки аполипопротеинами категории ЛПВП.
Особенности синтеза
Для того чтобы из холестерина образовались либо атеросклеротические бляшки (становящиеся одновременно и «заплатками» на повреждённой стенке артерии, и внутренними «распорками» в той зоне, где без них атрофия мышечного слоя должна бы привести к её окклюзии – спадению участка), либо гормоны, либо иная продукция, он в организме должен сначала синтезироваться в одном из трёх мест:
- коже;
- кишечнике;
- печени.
Поскольку клетки печени (их цитозоль и гладкий эндоплазматический ретикулюм) являются главными поставщиками соединения (в 50% и свыше того), следует рассмотреть синтез вещества именно с позиции совершающихся в ней реакций.
Синтез холестерина происходит в 5 этапов – с последовательным образованием:
- мевалоната;
- изопентенилпирофосфата;
- сквалена;
- ланостерина;
- собственно холестерина.
Цепочка превращений была бы невозможной без участия ферментов, катализирующих каждую из стадий процесса.
Видео о синтезе холестерина:
Ферменты, принимающие участие в образовании вещества
На первом этапе (состоящем из трёх операций), ацетил-CoA-ацетилтрасферазой (тиолазой) первоначально инициируется создание ацетоацетил-CoA (здесь и далее CoA – коэнзим А) путём слияния 2 молекул ацетил-CoA. Далее при участии ГМГ-CoA-синтазы (гидроксиметил-глутарил-CoA-синтазы) становится возможным синтез из ацетоацетила-CoA и ещё одной молекулы ацетил-CoA ꞵ-гидрокси-ꞵ-метилглутарил-CoA.
При восстановлении ГМГ (ꞵ-гидрокси-ꞵ-метил-глутарил-CoA) путём отщепления фрагмента HS-CoA с участием НАДФ-зависимой гидроксиметил-глутарил-CoA-редуктазы (ГМГ-CoA-редуктазы) образуется первый промежуточный продукт – предшественник холестерина (мевалонат).
На этапе синтеза изопентинилпирофосфата осуществляются четыре операции. На 1 и 2 мевалонат при посредстве мевалонаткиназы (а затем фосфомевалонаткиназы) путём дважды повторяющегося фосфорилирования превращается в 5-фосфомевалонат, а далее в 5-пирофосфомевалонат, на 3 стадии (фосфорилировании по 3-му углеродному атому) становящемуся 3-фосфо-5-пирофосфомевалонатом (при участии фермента киназы).
Последняя операция – это декарбоксилирование и дефосфорилирование с образованием изопентинилпирофосфата (инициированное участием фермента пирофосфомевалонат-декарбоксилазы).
При синтезе сквалена происходит первоначальная изомеризация изопентенилпирофосфата в диметилаллилпирофосфат (под влиянием изопентилфосфатизомеразы), затем изопентенилпирофосфат конденсируется с диметилаллилпирофосфатом (образуется электронная связь между C5 первой и C5 второй субстанций) с образованием геранилпирофосфата (и отщеплением пирофосфатной молекулы).
На следующей стадии образуется связь между C5 изопентенилпирофосфата и C10 геранилпирофосфата – в результате конденсации первого со вторым происходит образование фарнезилпирофосфата и отщеплением следующей молекулы пирофосфата от C15.
Завершается данный этап конденсацией двух фарнезилпирофосфатных молекул в зоне C15— C15 (по принципу «головой-к-голове») с отщеплением сразу 2 молекул пирофосфата. Для конденсации обеих молекул используются области пирофосфатных групп, одна из которых сразу отщепляется, что приводит к возникновению прескваленпирофосфата. При восстановлении НАДФН (с отщеплением второго пирофосфата) эта промежуточная субстанция (под влиянием сквален-синтазы) обращается в скавален.
В синтезе ланостерина присутствуют 2 операции: первая завершается образованием эпоксида сквалена (под действием скваленэпоксидазы), вторая – циклизацией эпоксида сквалена в конечный продукт этапа – ланостерин. Перемещением метильной группы от C14 на C13, а от C8 на C14 ведает оксидосквален-ланостерин-циклаза.
Последний этап синтеза включает в себя последовательность из 5 операций. В результате окисления C14 -метильной группы ланостерина возникает соединение, именуемое 14-десметилланостерином. После удаления ещё двух метильных групп (на C4) вещество становится зимостеролом, а в результате перемещения двойной связи C8=С9 в позицию C8=С7 происходит образование δ-7,24- холестадиенола (под действием изомеразы).
После перемещения двойной связи С7=C8 в позицию С5=С6 (с образованием десмостерола) и восстановлением двойной связи в боковой цепи образуется конечное вещество – холестерин (вернее, холестерол). «Руководит» финальной стадией синтеза холестерина фермент δ-24-редуктаза.
Что влияет на тип холестерина?
Учитывая малую растворимость низкомолекулярных липопротеидов (ЛПНП), их склонность к выпадению в осадок холестериновых кристаллов (с образованием в артериях бляшек атеросклероза, повышающих вероятность сердечных и сосудистых осложнений), липопротеиды данной категории часто называют «вредным холестерином», в то время как липопротеиды с высоким молекулярным весом (ЛПВП) с противоположными свойствами (без риска атерогенности) принято именовать холестерином «полезным».
Принимая во внимание относительность этого суждения (в организме не может быть как чего-либо безусловно полезного, так и исключительно вредного), тем не менее в настоящий момент для лиц с высокой склонностью к сосудистой патологии предлагаются меры контроля и снижения уровня ЛПНП до оптимальных показателей.
При цифре свыше 4,138 ммоль/л рекомендован подбор диеты для снижения их уровня до 3,362 (либо менее того), уровень свыше 4,914 служит показанием для назначения терапии по искусственному их снижению приёмом лекарственных препаратов.
К повышению в крови фракции «вредного холестерина» приводят факторы:
- низкой активности тела (гиподинамии);
- переедания (пищевой зависимости), а также его последствий – избытка массы либо ожирения;
- несбалансированности диеты – с преобладанием трансжиров, легкоусвояемых углеводов (сладостей, сдобы) в ущерб содержанию пектиновых веществ, клетчатки, витаминов, микроэлементов, жирных кислот полиненасыщенного состава;
- наличия привычных бытовых интоксикаций (курения, употребления спирта в виде различных напитков, злоупотребления лекарственными средствами).
Не менее мощное влияние оказывает наличие хронической соматической патологии:
- желчнокаменной болезни;
- эндокринных расстройств с гиперпродукцией гормонов коры надпочечников, дефицитом тиреоидных либо половых гормонов, либо сахарного диабета;
- почечной и печёночной недостаточности с расстройствами отдельных этапов синтеза «полезных» липопротеидов, происходящего в данных органах;
- наследственно обусловленных дислипопротеинемий.
Состояние холестеринового обмена напрямую зависит от состояния микрофлоры кишечника, способствующей (либо препятствующей) всасыванию пищевых жиров, а также участвующей в синтезе, трансформации, либо разрушении стеролов экзогенного или эндогенного происхождения.
И наоборот, к снижению показателя «вредного» холестерина приводят:
- занятия физкультурой, играми, танцами;
- ведение здоровой жизни без курения и алкоголя;
- правильная пища без избытка легкоусвояемых углеводов, с малым содержанием животных жиров насыщенного состава – но с достаточным содержанием клетчатки, жирных кислот полиненасыщенного состава, липотропных факторов (лецитина, метионина, холина), микроэлементов, витаминов.
Видео от эксперта:
Как происходит процесс в организме?
С потребляемой пищей в организм поступают лишь около 20% холестерина – остальные 80% он вырабатывает сам, помимо печени процесс синтеза производится гладким эндоплазматическим ретикулюмом клеток:
- кишечника;
- надпочечных желёз;
- почек;
- половых желёз.
Помимо описанного выше классического механизма создания молекулы холестерола, возможно её построение и иным, не мевалонатным методом. Так, одним из вариантов является образование вещества из глюкозы (происходящее при посредстве других ферментов и при других условиях существования организма).